ai
90 TopicsMeet the Equinix Team attending Mobile World Congress
Mobile World Congress 2025 is approaching - Are you attending? When it comes to the future of AI-ready, scalable digital infrastructure – the Equinix team of experts is here to help. Here’s a chance for you to meet the team in advance and connect in person in Barcelona! Let’s begin! Hi, I’m Efraim! Senior Principal Solutions Architect at Equinix. My dedication lies in bridging technology and bridging transformation, particularly in areas such as Cloud Computing, Artificial Intelligence, and Agility. You can find some of my recent Equinix blogs here. I'’ll be at MWC – let's connect and catch up on Cloud, AI, Programming, and my love of Cats.232Views5likes4CommentsThe Future of AI: Which Trend is Your Game- Changer?
AI is transforming everything, from how we work to how we discover new things. But what part of that change is truly capturing your imagination? We've put together a quick poll to find out which AI trend you're most excited about. Use the arrows on the right side to shift the options to cast your vote! We're constantly exploring the next big breakthroughs in technology to shorten your path to innovation and growth. Share your inputs and let’s shape a powerful future, together.160Views3likes0CommentsOptimal by Design: Architecting for Hybrid from Day One in AI and Application Development
For every new AI or application project you embark on, your initial architectural choices will determine the probability of long-term success of that effort, especially as it scales or needs to adapt to changing regulatory or business environments. This article discusses why architecting for hybrid up front puts you in the optimal position for anything that comes your way. https://blog.equinix.com/blog/2025/05/21/why-you-need-a-hybrid-first-strategy/ Do you agree? Is 'hybrid-first' truly the silver bullet for future-proofing, or are there scenarios where a pure cloud or colo/on-prem approach still makes sense? Share your perspective!129Views3likes1CommentWhat tech are you tinkering with these days in your side projects?
With AI being so topical these days I recently started to played around with stable diffusion, via the InvokeAI project (https://invoke-ai.github.io/InvokeAI/) - I'm hoping to write up a blog my experiences but the TL;DR is that InvokeAI is a pretty slick project. I was also playing around with GitHub Action self-hosted runners (https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/adding-self-hosted-runners) and was pretty impressed by how easy it was to install and use. Anyone else tinkering around with something? I've been meaning to further look into Rust and WebAssembly but haven't found the time to get back into it.10KViews3likes3CommentsHow do we prepare our kids for jobs that don’t exist?
Studies show that technology is progressing at such a rapid pace that up to 85% of the jobs that will be available in 2040 have not been created yet. Will AI, ML, and hardware advancements create a society where careers we take for granted today won’t exist in the future? In the Traceroute Podcast episode 9 “The Kids are Alright”, join me, Grace Ewura-Esi and Amy Tobey as Producer John Taylor puts a personal face on this idea through his 13-year-old daughter, Ella, who wants to be a chef when she grows up. Together, they explore this issue with Executive Chef-turned-Dell Computer Advocate Tim Banks, as well as employment attorney Michael Lotito, whose Emma Coalition seeks solutions to TIDE, the technologically induced displacement of Employment. Between trips to fully-automated restaurants and the latest advancements in 3D food replication, we discover that Gen Z’s humanity may be their biggest asset in tomorrow’s job market.7.5KViews3likes2CommentsBeyond the Hype: The CIO's Guide to Eliminating the Hidden Costs and Complexity of AI at Scale
The promise of Artificial Intelligence (AI) is clear: groundbreaking efficiency, new revenue streams, and a decisive competitive edge. But for you, the IT leader, the reality often looks a little different. You’ve moved past the initial proofs of concept. Now, as you attempt to scale AI across your global enterprise, the conversation shifts from innovation to infrastructure friction. You’re hitting walls built from unpredictable data egress fees, daunting data residency mandates, and the sheer, exhausting complexity of unifying multicloud, on-prem, and edge environments. The network that was fine for basic cloud adoption is now a liability—a bottleneck that drains budget and slows down the very models designed to accelerate your business. I'm Ted, and as an Equinix Expert and Global Principal Technologist here at Equinix, I speak with IT leaders every day who are grappling with these exact challenges. They want to know: What are the hidden costs when training AI across multiple clouds? How do we keep AI training data legally compliant across countries and regions? How can I balance on-prem, cloud, and edge when running AI workloads without adding more complexity? How to predict and control network spend when running apps across multiple clouds? What’s the best way to ensure my AI workloads don’t go down if one cloud region fails? The short answer is: You need to stop viewing your network as a collection of static, siloed pipes. You need a unified digital infrastructure that eliminates complexity, centralizes control, and makes compliance a feature, not a frantic afterthought. In this deep-dive, we'll unpack the major FAQs of scaling enterprise AI and show you how a platform-centric approach—leveraging the power of Equinix Fabric and Network Edge—can turn your network from an AI impediment into a powerful, elastic enabler of your global strategy. Ready to architect your way to AI success? Let's get started. Q: What are the hidden costs when training AI across multiple clouds? A. The AI landscape is inherently dynamic, with dominant players frequently being surpassed by innovative approaches. This constant evolution necessitates a multicloud strategy that provides flexibility to adopt new technologies and capabilities as they emerge. Organizations must be able to pivot quickly to leverage advancements in AI models, tools, and cloud services without being constrained by rigid infrastructure or high migration costs. However, the rub is, as cloud AI training scales, network-related costs often become the most unpredictable part of the total budget. The main drivers are data egress fees, inefficient routing, and duplicated network infrastructure. Data egress charges grow rapidly when moving petabytes of training data between clouds or regions, especially when traffic traverses the public internet. Unoptimized paths add latency that extends training cycles, while replicating firewalls, load balancers, and SD-WAN devices in every environment creates CapEx-heavy, operationally complex networks. Security infrastructure for network traffic is often duplicated between clouds, leading to cost inefficiencies. The solution lies in re-architecting data movement around private, software-defined interconnection. By replacing internet-based transit with direct, high-bandwidth links between cloud providers, organizations can reduce egress costs, improve throughput, and maintain predictable performance. Deploying virtual network functions (VNFs) in proximity to cloud regions also lowers hardware spend and simplifies management. Beyond addressing hidden cost, this approach gives IT leaders the agility to scale up or down with AI demand. As GPU clusters spin up, bandwidth can be turned up in minutes; when cycles finish, it can scale back just as fast. This elasticity avoids stranded investments while ensuring compliance and security controls remain consistent across clouds and regions. By unifying connectivity and network services on a single digital platform, Equinix helps enterprises eliminate hidden costs, accelerate data movement, and ensure the network is a strategic enabler rather than a bottleneck for AI adoption. Specifically, Equinix Fabric helps customers create private, high-performance connections directly between major cloud providers, enabling data to move securely and predictably without traversing the public internet. By extending this flexibility, Equinix Network Edge allows VNFs such as firewalls, SD-WAN, or load balancers to be deployed as software services near data sources or compute regions. Together, these capabilities form a unified interconnection layer that reduces hidden network costs, accelerates training performance, and simplifies scaling across clouds. Q: How do we keep AI training data legally compliant across countries and regions? A. Data sovereignty and privacy regulations increasingly shape how and where organizations can process AI data. Frameworks such as GDPR and regional residency laws often require that sensitive datasets remain within geographic boundaries while still being accessible for model training and inference. Balancing those requirements with the need for scalable compute across clouds is one of the core architectural challenges in enterprise AI. To address this, many enterprises choose to keep data out of the cloud but near it, placing it in neutral, high-performance locations adjacent to major cloud on-ramps. This approach enables control over where data physically resides while still allowing high-speed, low-latency access to any cloud for processing. It also helps avoid unnecessary egress fees, since data moves into the cloud for analysis or training but not back out again. By establishing deterministic, auditable connections between environments leveraging private, software-defined interconnection keeps data flows under enterprise control, rather than relying on public internet paths. As a result, organizations can enforce consistent encryption, access control, and monitoring across regions while maintaining compliance. This also translates into greater control and auditability of data flows. Workloads can be positioned in compliant locations while still accessing global AI services, GPU clouds, and data partners through secure, private pathways. By combining governance with agility, Equinix makes it possible to pursue your most pressing global AI strategies while still reducing risk. Today, Equinix Fabric can support this approach by enabling private connectivity between enterprise sites, cloud regions, and ecosystem partners, helping data remain local while workloads scale globally. Equinix Network Edge complements this by allowing in-region deployment of virtualized security and networking functions, so policies can be enforced consistently without requiring physical infrastructure in every jurisdiction. Together, these capabilities offer customers a foundation for compliant, globally distributed AI architectures. As a result, customers can create network architectures that not only reduce compliance risk but also turn regulatory constraints into a competitive advantage by delivering trusted, legally compliant AI services, based on the right data at the right time in the right place at global scale. Q: How can I balance on-prem, cloud, and edge when running AI workloads without adding more complexity? A. Determining where AI workloads should run involves balancing control, performance, and scalability. On-premises environments offer data governance and compliance, public clouds deliver elasticity and access to advanced AI tools, and edge locations provide low-latency close to users and devices. Without a unified strategy, this mix can lead to fragmented systems, inconsistent security, and rising operational complexity. One effective approach is a hybrid multicloud architecture that standardizes connectivity and governance across all environments. Equinix defines hybrid multicloud architecture as a flexible and cost-effective infrastructure that combines the best aspects of public and private clouds to optimize performance, capabilities, cost, and agility. This design allows workloads to move seamlessly between on-prem, cloud, and edge based on performance, regulatory, or cost needs without rearchitecting each time. As a result, organizations can employ a hybrid multicloud architecture where policies, security, and connectivity are consistent across all environments. AI training can happen in the cloud with high-bandwidth interconnects, inference can run at the edge with low-latency access to devices, and sensitive datasets can remain on-premises to maintain regulatory compliance. This architecture enables seamless interconnection across clouds, users, and ecosystems, supporting evolving business needs.If customers utilize Network Edge VNFs they can access a control plane to manage traffic flows seamlessly across these environments, ensuring workloads are placed where they deliver the most business value with a predictable cost. It also enables the deployment of virtual network functions such as firewalls, load balancers, and SD-WAN as software services, reducing hardware overhead and improving consistency. Together, they create a common network fabric that simplifies operations, supports workload mobility, and maintains governance across diverse environments. As a result, customers can minimize complexity by centralizing management, turning what used to be a fragmented sprawl into a unified, agile, and compliant AI operating model. Q: How to predict and control network spend when running apps across multiple clouds? A. As AI and multicloud workloads scale, network costs often become the least predictable element of total spend. Massive east-west data movement between training clusters, storage systems, and clouds can trigger unexpected egress and transit fees, while variable routing across the public internet adds latency and complicates cost forecasting. These factors can make it difficult for IT and finance teams to align budgets with actual workload behavior. A more sustainable approach is to build predictability and efficiency into the interconnection layer. By replacing public internet paths with dedicated, software-defined connections, organizations can achieve elastic bandwidth scaling while having predictable billing. This model not only ensures stable and reliable network performance but also enhances cost transparency, enabling businesses to optimize their connectivity expenses while supporting evolving operational demands. Equinix Fabric supports this model by enabling private, high-performance connections to multiple clouds and ecosystem partners from a single port, fostering predictability in network performance. Equinix Network Edge complements this by allowing network functions such as firewalls, SD-WAN, and load balancers to be deployed virtually, reducing CapEx and aligning spend with actual utilization. Together, they deliver a unified network architecture that stabilizes performance, enhances cost transparency, and enables organizations to scale bandwidth effectively while managing costs in alignment with their AI and multicloud workloads. Q: What’s the best way to ensure my AI workloads don’t go down if one cloud region fails? A. AI workloads are highly distributed, and regional outages can disrupt training, inference, or data synchronization across clouds. Relying on a single provider or static internet-based paths introduces latency and failure risks that can cascade across operations. Building resilience into the interconnection layer ensures continuity even when one region or cloud becomes unavailable. The key is to design for multi-region redundancy with pre-established, high-performance failover paths. By maintaining secondary connections across clouds and geographies, organizations can automatically reroute workloads and traffic without interruption or loss of performance. Equinix Fabric enables this design by providing software-defined, private connectivity to multiple cloud providers and regions. Equinix Network Edge complements it by supporting virtualized global load balancers, SD-WAN, and firewalls that dynamically redirect traffic and enforce security policies during failover. Together, they create a resilient, globally consistent architecture that maintains availability and performance even when individual cloud regions experience disruption.123Views2likes0CommentsNew Traceroute Episode: Has AI triggered our emotions?
Since the dawn of the Industrial Revolution, people have humanized technology. We name our cars, or we talk to our phone batteries and beg them not to die on us. However, perhaps no other technology has triggered our emotions quite as intensely as AI. The truth is, we interact with AI in a way we don’t with any other tech: a way that’s more immediate, more personal…more human. The question is, why do we feel this way? In fact, why do we have feelings at all about AI? In this Traceroute two-parter, we go to couples counseling with AI and take a deeper look at this unique relationship. In part one, we explore the good side of our feelings. We talk with JD Ambati of EverestLabs, a company using AI to reduce thousands of tons of CO2e emissions, and we meet James Vlahos, the scientist giving voice to “Moxie,” an AI robot that teaches kids how to express their feelings and have deeper emotional connections. If AI can indeed solve problems and create emotional bonds, surely it would never try to do us harm… right?2.4KViews2likes0CommentsAI/ML Solutions for Large-Scale Development and Deployment
Join Equinix at NVIDIA #GTC22 to hear the latest breakthroughs in AI and for our on-demand session where we’ll explore new consumption models for AI infrastructure that make it easier for enterprises to speed time-to-insight. About the Session In a recent survey, 91% of enterprise respondents indicated a preference for hybrid cloud infrastructure for AI development, and 93% said hosted/managed infrastructure services is critical to AI success. Businesses today are turning to new approaches that can simplify and expedite the process of delivering business-critical AI apps without the complexity of standing up their own infrastructure, or building out their own data centers. In this joint Equinix and NVIDIA session, we’ll explore new consumption models for AI infrastructure that make it easier for enterprises to speed time-to-insight.1.1KViews1like0CommentsYour AI Network Blueprint: 7 Critical Questions for Hybrid and Multicloud Architects
Artificial Intelligence (AI) has moved beyond the lab and is now the engine of digital transformation, driving everything from real-time customer experiences to supply chain automation. Yet, the true performance of an AI model—its speed, reliability, and cost-efficiency doesn't just depend on the GPUs or the data science; it depends fundamentally on the network. For Network Architects, AI workloads present a new and complex challenge: how do you design a network that can handle the massive, sustained bandwidth demands of model training while simultaneously meeting the ultra-low-latency, real-time requirements of model inference? The wrong architecture can lead to GPU clusters sitting idle, costs skyrocketing, and AI projects stalling. In this deep-dive, we tackle the seven most critical networking questions for building a high-performance, cost-optimized AI infrastructure: What are the networking differences between AI training and inferencing? How much network bandwidth do AI models really need? What’s the optimal way to interconnect GPU clusters and storage to minimize latency? What’s the most efficient way to transfer multi-petabyte AI datasets between clouds? Best practices for protecting AI training data in transit? How to architect for resiliency for AI in multicloud environments? What are my options for connecting edge locations to cloud for real-time AI? We’ll show you how Equinix Fabric and Network Edge can help you dynamically provision the right connectivity for every phase of the AI lifecycle from petabyte-scale data transfers between clouds to real-time inference at the edge, turning your network from a constraint into an AI performance multiplier. Ready to dive into the definitive network blueprint for AI success? Let's get started. Q: What are the networking differences between AI training and inference? A. AI training and inference workloads impose distinct demands on connectivity, throughput, and latency, requiring network designs optimized for each phase. Training involves processing massive datasets, often multiple terabytes or more, across GPU clusters for iterative computations. This creates sustained, high-volume data flows between storage and compute, where congestion, packet loss, or latency can slow training and increase cost. Distributed training across multiple clouds or hybrid environments adds further complexity, demanding high-throughput interconnects and predictable routing to maintain synchronization and comply with data residency requirements. Inference workloads, by contrast, are latency-sensitive rather than bandwidth-heavy. Once a model is trained, tasks like real-time recommendations, image recognition, or sensor data processing depend on rapid network response times to deliver outputs close to users or devices. The network must handle variable transaction rates, distributed endpoints, and consistent policy enforcement without sacrificing responsiveness. A balanced approach addresses both needs: high-throughput interconnects accelerate data movement for training, while low-latency connections near edge locations support real-time inference. Equinix Fabric can enable private, high-bandwidth connectivity between on-premises, cloud, and hybrid environments, helping minimize congestion and maintain predictable performance. Equinix Network Edge supports the deployment of virtualized network functions (VNFs) such as SD-WAN or firewalls close to compute and edge nodes, allowing flexible scaling, optimized routing, and consistent policy enforcement without physical hardware dependencies. In practice, training benefits from robust, high-throughput interconnects, while inference relies on low-latency, responsive links near the edge. Using Fabric and Network Edge together allows architects to provision network resources dynamically, maintain consistent performance, and scale globally as workload demands evolve, all without adding operational complexity. Q: How much network bandwidth do AI models really need? A. Bandwidth needs vary depending on the type of workload, dataset size, and deployment model. During training, large-scale models process vast datasets and generate sustained, high-throughput data movement between storage and compute. If bandwidth is constrained, GPUs may sit idle, extending training time and increasing costs. In distributed or hybrid setups, synchronization between nodes further amplifies bandwidth requirements. Inference, in contrast, generates smaller but more frequent transactions. Although the per-request bandwidth is lower, the network must accommodate bursts in traffic and maintain low latency for time-sensitive applications such as recommendation engines, autonomous systems, or IoT processing. An effective strategy treats bandwidth as an elastic resource aligned to workload type. Training environments need consistent, high-throughput interconnects to support data-intensive operations, while inference benefits from low-latency connectivity at or near the edge to handle bursts efficiently. Equinix Fabric can provide private, high-capacity interconnections between cloud, on-prem, and edge environments, enabling bandwidth to scale with workload demand and reducing reliance on public internet links. Equinix Network Edge allows VNFs, such as SD-WAN or WAN optimization, to dynamically manage traffic, compress data streams, and apply policy controls without additional physical infrastructure. By combining Fabric for dedicated capacity and Network Edge for adaptive control, organizations can right-size bandwidth, keep GPUs efficiently utilized, and manage cost and performance predictably. Q: What’s the optimal way to interconnect GPU clusters and storage to minimize latency? A. The interconnect between GPU clusters and storage is critical for AI performance. Training large models requires GPUs to continuously pull data from storage, so any latency or jitter along that path can leave compute resources underutilized. The goal is to establish high-throughput, low-latency, and deterministic data paths that keep GPUs saturated and workloads efficient. Proximity plays a major role; placing GPU clusters and storage within the same colocation environment or campus minimizes distance and round-trip time. Direct, private connectivity between these systems avoids internet variability and security exposure, while high-capacity links ensure consistent synchronization for distributed workloads. A sound architecture combines both physical and logical design principles: locating compute and storage close together, using private interconnects to reduce variability, and applying software-defined tools for optimization. Virtual network functions such as WAN optimization, SD-WAN, or traffic acceleration can help reduce jitter and enforce quality-of-service (QoS) policies for AI data flows. Equinix Fabric enables private, high-bandwidth interconnections between GPU clusters, storage systems, and cloud regions, supporting predictable, low-latency data transfer. For multi-cloud or hybrid designs, Fabric can provide on-demand, dedicated links to GPU or storage instances without relying on public internet routing. Equinix Network Edge can host VNFs such as WAN optimizers and SD-WAN close to compute and storage, helping enforce QoS and streamline traffic flows. Together, these capabilities support low-latency, high-throughput interconnects that improve GPU efficiency, accelerate training cycles, and reduce overall AI infrastructure costs. Q: What’s the most efficient way to transfer multi-petabyte AI datasets between clouds? A. Transferring large AI datasets across clouds can quickly become a performance bottleneck if network paths aren’t optimized for sustained throughput and predictable latency. Multi-petabyte transfers often span distributed storage and compute environments, where even small inefficiencies can delay model training and inflate costs. Efficiency starts with minimizing distance and maximizing control. Locating GPU clusters and storage within the same colocation environment or interconnection hub reduces round-trip latency. Establishing direct, private connectivity between environments avoids the variability, congestion, and security exposure of internet-based routing. For distributed training, high-capacity links with deterministic paths are essential to keep GPU nodes synchronized and maintain steady data flows. A well-architected interconnection strategy blends physical proximity with logical optimization. Physically, high-density interconnection hubs reduce latency; logically, private, high-throughput connections and advanced VNFs such as WAN optimizers or SD-WAN enhance performance by reducing jitter and enforcing quality-of-service (QoS) policies. Equinix Fabric can facilitate this model by providing dedicated, high-bandwidth connectivity between clouds, storage environments, and on-premises infrastructure, helping ensure consistent performance for large data transfers. Equinix Network Edge complements this with traffic optimization, encryption, and routing control near compute or storage nodes. Together, these capabilities can help organizations move multi-petabyte datasets efficiently and predictably between clouds, while reducing costs and operational complexity. Q: What are best practices for protecting AI training data in transit? A. AI training frequently involves transferring large volumes of sensitive data across distributed compute, storage, and cloud environments. These transfers can expose data to risks such as interception, tampering, or non-compliance if not properly secured. To mitigate these risks, organizations should combine private connectivity, encryption, segmentation, and continuous monitoring to maintain data integrity and compliance. End-to-end encryption with automated key management ensures that data remains protected while in motion and satisfies regulations such as GDPR and HIPAA. Network segmentation and zoning isolate sensitive data flows from other traffic, while monitoring and logging help detect anomalies or unauthorized access attempts in real time. Private, dedicated interconnections—such as those available through Equinix Fabric—can strengthen these protections by keeping sensitive data off the public internet. These links provide predictable performance and deterministic routing, ensuring data stays within controlled pathways across regions and providers. Equinix Network Edge enables the deployment of VNFs such as encryption gateways, firewalls, and secure VPNs near compute or storage nodes, providing localized protection and traffic inspection without additional hardware. VNFs for WAN optimization or integrity checking can also enhance throughput while maintaining security. Together, these measures help organizations maintain confidentiality and compliance for AI data in transit, protecting sensitive assets while preserving performance and scalability. Q: How should I architect for resiliency in multicloud AI environments? A. AI workloads that span data centers and cloud environments demand resilient, high-throughput network architectures that can maintain performance even under failure conditions. Without proper design, outages or routing inefficiencies can delay model training, underutilize GPUs, or drive up egress costs. Building resiliency starts with private, high-bandwidth interconnects that avoid the variability of the public internet. Equinix Fabric supports this by enabling direct, software-defined connections between on-premises data centers, multiple cloud regions, and AI storage systems, delivering predictable performance and deterministic routing. Resilience also depends on flexible service provisioning. Equinix Network Edge enables VNFs such as firewalls, SD-WAN, or load balancers to be deployed virtually at network endpoints, allowing traffic steering, dynamic failover, and policy enforcement without physical appliances. Combining redundant Fabric connections across cloud regions with Network Edge-based failover functions helps ensure business continuity if a link or region goes down. Visibility is another key component. Continuous monitoring and flow analytics help identify congestion, predict scaling needs, and verify policy compliance. Integrating private interconnection, virtualized network services, and comprehensive monitoring creates a network foundation that maintains performance, controls costs, and keeps AI workloads resilient across a distributed, multicloud architecture. Q: What are my options for connecting edge locations to cloud for real-time AI? A. Real-time AI applications, such as autonomous vehicles, industrial IoT, or retail analytics, depend on low-latency, reliable connections between edge sites and cloud services. Even millisecond delays can affect inference accuracy and responsiveness. The challenge lies in connecting distributed edge locations efficiently while maintaining predictable performance and security. Traditional approaches like internet-based VPNs are easy to deploy but suffer from variable latency and limited reliability. Dedicated leased lines or MPLS circuits offer consistent performance but are costly and slow to scale across many sites. A more flexible option is to use software-defined interconnection and virtualized network functions. Equinix Fabric enables direct, private, high-throughput connections from edge locations to multiple clouds, bypassing the public internet to ensure predictable latency and reliability. Equinix Network Edge extends this model by hosting VNFs, such as SD-WAN, firewalls, and traffic accelerators, close to edge nodes. These functions provide localized control, dynamic routing, and consistent security enforcement across distributed environments. Organizations can also adopt a hybrid connectivity model, using private Fabric links for critical real-time traffic and internet-based tunnels for non-critical or backup flows. Combined with intelligent traffic orchestration and monitoring, this approach balances performance, resilience, and cost. The result is an edge-to-cloud architecture capable of supporting real-time AI workloads with consistency, flexibility, and scale.98Views1like0Comments